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Abstract. We develop a theory of energy-, angle- and spin-resolved photoemission spectro- 
scopy of non-magnetic crystalline metals and their alloys on the basis of relativistic quantum 
mechanics. In particular, the theory is applicable to cases of more than one atom per unit 
cell and random solid solutions. We illustrate it by explicit first-principles calculations for 
pure Cu, Ag and Au, ordered Cu,Au and disordered C&,7sA&.zs. 

1. Introduction 

The one-electron spectra of crystalline solids play an important role in our understanding 
of their properties. The only experimental probe that comes close to measuring both the 
wavevector k and energy E ,  corresponding to these excitations over a wide range of 
their values, is angle-resolved photoemission spectroscopy (ARPES). Indeed, difficulties 
involving the so-called many-body effects and other problems of interpretation not- 
withstanding, much has been learned about the band structure of solids by this technique 
(Himpsel 1983, Williams et a1 1980). In this paper we present a relativistic theory, and 
its computational implementation, of ARPES. Our aim has been to facilitate the analysis 
of the very complex data expected, and found, in measurements on metallic alloys 
containing heavy elements. 

While the interpretation of photoenfission experiments in terms of the band structure 
and the notion of direct transitions is often useful (Knapp et a1 1979), to make the most 
of the highly structured data it is best, and often necessary, to perform full photocurrent 
calculations; that is to say, one must consider the transitions from initial states of a semi- 
infinite solid to the final time-reversed version of the states, usually studied in low-energy 
electron diffraction (LEED) problems (Mahan 1970, Schaich and Ashcroft 1971, Caroli 
eta1 1973). The only formulation of this problem, that is both tractable for first-principles 
crystal potentials and constitutes a realistic description of the surface is the elegant and 
very efficient multiple-scattering theory of Pendry (Pendry 1976, Hopkinson et a1 1980). 
Most current work, aimed at quantitative calculations of the photocurrent from pure 
metals, is based on this approach. Moreover, it has been adapted to treating the inter- 
esting case of random binary alloys by Durham (1981), who describes the electronic 
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M o t t  de tec tor  

Figure 1. The ideal angle and spin-resolved photo- 
emission experiment and directions and angles 
definitions. 

structure of such alloys within the framework of the first-principles KKR-CPA method 
(Stocks and Winter 1985, Faulkner 1982) and calculates the configurationally averaged 
photocurrent (Jordan and Durham 1988). The theory we shall develop in this paper is 
a relativistic generalisation of those of both Pendry and Durham. 

The need to treat the problem at hand relativistically is easily established. As is well 
known, for the atomic number Z > 50 the electronic structure of atoms and solids brims 
with relativisticeffects (Rose 1961). Indeed, it has been studiedvigorously in pure metals 
(McDonald et a1 1981, Eckardt et a1 1984), ordered semiconductors (Christensen and 
Christensen 1986, Fasol et aZl988) and random alloys (Staunton et aZ1983, Ginatempo 
and Staunton 1988) alike. Moreover, at least in principle, all these calculations have 
firm foundations in the relativistic spin-density-functional theory (Rajagopal 1978 , 
McDonald and Vosko 1979). Thus calculations that bridge the gap between the first- 
principles energy bands and the measured photoemission spectra are both needed and 
timely. 

For pure metals the framework for the required calculations of the photocurrent has 
been already developed. A quite general theory that includes ferromagnetic order on 
equal footing with relativistic effect was put forward by Ackermann and Feder (1985a). 
An equivalent formalism for systems without magnetic order was presented by Gina- 
tempo et aZ(l985). Both of these sets of authors have implemented their schemes in 
physically interesting situations (Ackermann and Feder 1985b, Tamura et aZ 1987, 
Ginatempo et a1 19851 and were able to investigate such qualitatively new features of a 
relativistic treatment as the coupling between the spin and orbital degrees of freedom. 
Evidently these calculations should be regarded as preliminary forays into a potentially 
very fertile field of research. A good review of this early work was given by Feder (1985). 

All the above calculations follow closely the approach of Pendry. Formally they 
merely replace the Schrodinger equation for electrons in the presence of incident photons 
by the corresponding Dirac equation. The part of our work that pertains to pure 
metals and ordered inter-metallic compounds uses essentially the same formalism. 
Nevertheless, we recall the basic outline of this theory in 0 2 ,  not only as an introduction to 
our treatment of random alloys in § 3, but also to highlight certain, hitherto unexplored, 
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aspects of it. In particular, we discuss the exact relativistic version of the acceleration 
formula for the dipole matrix element (Pendry 1976) and the origin of the relativistic 
Cooper minima (Kim et a1 1981). Moreover we study the interesting case of many atoms 
per unit cell. 

In 9 3 we present our theory of the configurationally averaged photocurrent from 
random binary alloys. It is a fairly straightforward relativistic generalisation of the non- 
relativistic work of Durham (1981). 

Finally, we note the ability to calculate on the same footing the photoemission spectra 
of both ordered inter-metallic compounds and random alloys of the same average 
composition opens the way to investigations of changes in the electronic structure during 
an order-disorder transformation (Durham et aZ1983, Temmerman et a1 1988). Clearly, 
such studies are of considerable interest from the point of view of identifying the 
electronic causes of compositional order (Gyorffy et a1 1988). We illustrate this feature 
of the theory by explicit first-principles calculations for the Cu3Au system. However, 
we leave the detailed study of the ordering process and comparison of the theory with 
experiments (Jordan et a1 1985) to a future publication. 

2. A relativistic theory of photoemission from ordered metals 

2.1. The multiple-scattering approach to the problem 

In figure 1 we give a schematic description of a photoemission experiment. A photon 
comes in along a given direction q = (ep, qp) ,  and a photoelectron beam is collected in 
a Mott detector, placed in a plane far from the crystal, along a direction 6- = (ee, ve). 
The detector internal channels are specified by rotating it to fix a direction f i d  = (e,,, Td), 

whose meaning will be clear from the following. We take as the laboratory reference 
frame a coordinate system having the z axis normal to the surface and oriented towards 
the bulk crystal. 

The motion of an electron is governed by the Dirac Hamiltonian 

H = c a  * [p - (e /c)A(r ,  t ) ]  + pmc2 + V(r) (1) 

where cis the speed of the light, e the electronic charge, and m the electronic mass. Vis 
the crystal potential including a surface term. In the Coulomb gauge (V * A = 0 )  

A(r ,  t )  = a exp (iq - r - wt) + HC 
with q = /q /  = w/c. The electrostatic potential is 

V(r) = Vsurdz) + 2’ V,(r - Ri) 
1 

(3) 

where the sum is limited to the half-space occupied by the atoms at the lattice sites Ri. 
The individual potential wells are centred on the lattice sites and are in the muffin-tin 
form. The surface barrier is assumed to be step function of height V,,, with respect to the 
muffin-tin zero. The Dirac matrices ax, ay, a, and p are of the standard form 

O a  

a 0  

where U is the 2 x 2 Pauli spin-matrix and I is 2 X 2 the identity matrix. 

(4) 
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In anticipation of using perturbation theory, we may split H into two parts 

H = H o  + (A exp(-iwt) + HC) (5 )  
where 

H~ = cp + pmc’ + V(r) 

and in the electric approximation (hw/mc2 4 1) the electron-photon vertex is described 
by 

A = -ea a exp(iq - r) = -ea a (7) 
In the one-step model of photoemission (Pendry 1976), the rate of probability of 

finding an electron at the detector, with energy E + hw and momentum k-, is 

I(E9 k ;  0, q, 4 = z I(%(Ei)l A I~,(E,>>l’ W l  - E, + ho)  
if 

= 2‘ I(Yi(Ei)l A lYfLEED(Ei + hw))I2 = -E// drdr’Y’fLEED 
1 n 

X (r; E + hw)AG+(r ,  r’; E)AtY’fLEED* (r’; E + hw)  (8) 
where G+ is the total Green’s electronic function for the half-space crystal plus vacuum, 
and the final state (the so called time reversed LEED state) is 

YfLEED(r; E + hw) = ( r (G-(E + hw)l f )  (9) 

(10) 

(11) 

with 

(rlf) = c qAUA(k-) exp(ik11 (. - ql) d ( Z  - Z )  

(k’),l = k; 

1 

k: = +[2m(E + hw - Vo){1 + [ (E  + h o  - Vo)/m~’]}]’’’ 

where the ? sign means that the wave is travelling in the positive or negative z direction. 
Note that (rlf) is the plane wave ‘at the detector’, and the four-spinor amplitude U, is 
defined as 

/ X1 \ 
E + hw - Vo + 2mc2 CO * k -  

2(E + hw - vo + mc’) U ; ( k - )  = ( 
where the xn are Pauli spinors. The coefficients q1 are related to the setting of the Mott 
detector. These latter quantities Will be further specified in the next subsection. 

In what follows we exploit the multiple-scattering theory to analyse the quantities 
appearing in (lo), and to work out the necessary expression for calculating the transition- 
matrix elements, in the dipole approximation, using the solutions of the radial Dirac 
equations and the muffin-tin potentials. 

2.2. The photoelectron beam and its polarisation 

The state of an electron in the Mott detector is that of a positive-energy particle moving 
in a constant potential. Its wavefunction is therefore a Dirac plane wave, to be joined 
smoothly at the surface to a superposition of Bloch waves propagating throughout the 
crystal. 



A relativistic photoemission theory 6487 

The Mott detector measures the spin-polarisation of the photoemitted electrons. 
The setting of the detector is specified by the coefficients qn= + = q+, qA= - = q-. They 
are normalised by the requirements 

h+I2 + 1q-I2 = 1; 

4 - / q  + = exp(iq d ) tan(@ d /2) 

(13a) 

(13b) 

and 

where the angles 6, and 
found to be up and down. In fact, the following cases are distinguished. 

(i) The detector can see only ‘up’ particles then q+ = 1, q- = 0. 
(ii) The detector can see only ‘down’ particles then q+ = 0, q- = 1. 
(iii) The detector cannot distinguish the A then q+ = 2-‘12, q- = 2-@. 

specify the directions with respect to which the electrons are 

Note that the Pauli spinors xn in (12) describe polarisation states which are parallel and 
antiparallel to the direction of Ad. 

The aim of the theory is to calculate 

ZA* = -(Im/n)(Yi:ED 1AG +(E)Atlyi:ED) 

(rlf, A )  = qn U + ( k - )  exp(iki1 - (r - R)il) S(z - 2). 

(14) 

(15) 

starting from 

The polarisation of the beam will be given by 

P, = (Z++ - z--)/ztot 
where 

I,,, = z++ + z-- (17) 
is the total photocurrent. The surface parallel components of the polarisation can be 
measured by changing i t d .  An interesting novel feature of the relativistic photoemission 
theory is that the beam may be polarised, e.g. P # 0, even for paramagnetic metals 
(Ginatempo et a1 1985, Tamura et a1 1987). 

2.3. The electric-dipole-matrix elements 

One of the tasks in evaluating the photocurrent given in (14) is the calculation of the 
dipole-matrix elements. As noted by Pendry (1976), for muffin-tin potentials and a non- 
relativistic scattering theoretic description of the electrons this is conveniently done by 
using the acceleration formula 

( E  + holA,,lE) = -(e/mc)(E + hwk * alE) = (ei/mco)(E + hola VViIE). (18) 
In this section we derive a relativistic version of this approach. 

For the purposes of this discussion it is sufficient to consider the photoemission 
process for an electron in the field of a single muffin-tin well. Then our aim is to evaluate 
the relativistic dipole matrix element 

f (vK’JE + ho)l - e a  ‘alvKp(E)) (19) 
where the superscript t means time-reversed, and the four-spinor wavefunctions are (we 
drop subscripts i and j from the wavefunctions) 
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where the upper and lower components g, and f ,  are the regular solutions of the coupled 
first-order differential equations 

, I  

( ( E  - V i ( r )  + 2mc2) fK(r)  = c[d/dr + ( K  + l) /r]g,(r)  

when r S R,,, For r > R,, the solution is 

q K p ( ' 7  E )  = -k[cot E )  - N K p ( r ?  

where the 'Bessel four-spinor' is 

j d W X , p ( ' )  

and the Neumann spinor is the equivalent of (23) but with spherical Neumann functions 
instead of the Bessel functions j .  ' ; ( E )  is the scattering-phase shift and 

k = {2m(E - V,)[1 + ( E  - Vo)/mc2]}''2. (24) 
We introduce the spin-angular harmonics as 

X K p  ('> = ' f p  ', - 3  ( ' ) x S  
s =  ? b  

where xs is the Pauli spinor, Ylp--s is a complex spherical harmonic, C:p is a Clebsh- 
Gordan coefficient and K is the eigenvalue in the following equation 

- (a  * + ' ) X K p  = K X K p  (26) 

and is called the spin-angular quantum number. It assumes non-zero integer values and 
is short for 1 and j according to the following table 

-1 1 -2 2 -3 3 etc. r": 1 j :  s i  p i  p $  d $  d $  f $  etc. 

where p is the azimuthal quantum number ( - j  s ,U 6 j ) .  SK is the sign of K and l= 1 - 
S,. The time reversal operation applied to the spin angular function produces: 

m x K p  = xLp = -ia,X:p= x (-2~)C"'yI*,+,(')X,. (27) 
,=*$ 

We are now ready to calculate the dipole matrix element. Substituting (20) in equation 
(19) we find: 

'(q.V'fi' ( E  + n w ) l  - ' a / q K p  ( E ) )  

where 
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The angular integrals A give rise to the selection rules p + p' = 0, k 1, Aj = 0, k l ,  AI = 
kl .  The last two rules might be written in terms of K as K' = K k S,, -K. 

The inconvenient feature of (28), the relativistic velocity formula for the dipole 
matrix element, is that the radial integrals have to be performed for all r ,  not only r 
within the muffin-tin sphere. In the full theory, where vKp above is replaced by a Bloch 
wave, this difficulty is aggravated to the point where, in the interstitial region between 
the muffin-tin sphere and cell boundary, the angular and the radial integration cannot 
be separated. Thus considerable computational gain would occur if the matrix elements 
can be rewritten in such a form that the spatial integration is over the muffin-tin only. 
This is precisely what the acceleration formula achieves in the non-relativistic discussion 
of this problem. To find the relativistic analogue of (18) we begin by noting the following 
identities: 

f ( V K ' f l ' ( E  + h w ) l  - e(y ' a l Y K p ( E ) )  

= -{e/[2(E + mc2) + hw]}' ( q K t p , ( E  + ho)I[H, a . a ] + l q K , ( E ) )  
= + mc2) + hw]}' ( v K I p I ( E  + h o ) j ( a . p  + ~ , a ' a / c ) I q , , ( ~ ) )  

(30) 
and 

' ( V K ' f l ' ( E  + n w > l a  ' P I v K p ( E ) )  = (l/ho)'(vK'p'(E + h w ) l [ H ,  a 'PI- l q K p ( E ) )  

= (i/w)'(VK'p'(E + n w ) l a  * vv i lqKp(E) )  

= (i/w)D:'p'K/4 / r2 d r  (dVi/dr) ( g K ' g K  + f K ' f K )  (31) 

where the symbol [ I-(+) stands for commutator (anti-commutator), and 

D K p K ~ p ~  = dS2 X&(U * f ' ) * x K r f l I  = D-Kp-K,p ,  s 
Here the non-relativistic photoemission angular integrals, D""" (see Pendry 1976) are 
defined by 

Exploiting the radial Dirac equations (21) and substituting in the commutation relations 
(30) and (31), we find a simple arithmetic relation between the coefficients D (equation 
(32)) andA (equation (29)): 

K , p , - K p  = i(K - K' - l)D;,p,Kp 
{A A - K ' p ' K p  = i(K' - K - l )D; ,p ,Kp .  

Finally putting everything together yields the principle result of this section: 

(34) 
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Evidently our aim to circumvent the spatial integration outside the muffin-tin sphere 
has been achieved since dVi/dr and Vi are both zero beyond the muffin-tin radius. 

It is reassuring to note that in the c 4 00 limit (36) reduces to 

d Vi 
dr (37) 

where Rl(r, E )  are the radial solution of the appropriate Schrodinger equation for 
the orbital quantum number I and energy E ,  and which is the usual non-relativistic 
acceleration formula. Ackermann and Feder (1985a, b) were able, exploiting the Green 
theorem, to write down another formula that, although the integration is limited to the 
muffin-tin radius, does not reduce at glance to the non-relativistic counterpart when the 
c 4  limit is taken. 

Before moving on with our theory of photoemission in the next section we shall 
pause, briefly, to examine some interesting consequences of the dipole-matrix-element 
formulae in equations (35) and (36). 

2.4 .  The relativistic Cooper minima 

In addition to being useful in the numerical evaluation of the dipole matrix elements, 
equation (36) has a number of attractive features of general significance. One of these 
is the ease with which it leads to the explanation of the occurrence of minima in the 
dipole oscillator strength as a function of the incident photon frequency. These are the 
famous Cooper minima discovered in the non-relativistic quantum mechanics by Cooper 
(Cooper 1962, Fano and Cooper 1968). In that context it was understood as minima in 
the square of the radial integrals 

d Vi 1 r2 drRI (E)  r R I A I ( E  + hw)  = r2 d r R l  - - R L + I  
d r  

due to the ‘moving in’ towards the origin of the nodes of the high energy wavefunction 
for increasing photon energy. The minimum in the oscillator strength occurs at an energy 
where the node in a wavefunction coincides spatially with a maximum in the other. 

Subsequently, it was noted that the Cooper minima are also a feature of the relativistic 
theory and that relativistic effects can dramatically alter their shape and position (Kim 
et all981). As was stressed by Fano (1969), relativistic effects are more pronounced for 
circularly polarised light with frequency near the Cooper minima. 

As an illustration, we have calculated the oscillator strength for a single muffin-tin 
well of Au, for the ‘d-f‘ permitted transitions, starting from an initial energy of E = 
0.6 Ryd. above the muffin-tin zero, as a function of the photon frequency. Figure 2 
shows the logarithm of the oscillator strengths for the indicated transitions and one can 
see that each of the curves has a sharp minimum. These minima correspond to the 
oscillator strengths zeroes, and occur at hw = 205 eV for the (K = 2, K’ = 3) transition 
(the dashed curve in figure 2), at hw = 185 eV for the (K = -3, K’ = 3) one (dotted 
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l " " " " " ' I  

50 150 2 50 

Photon energy ( e V )  

Figure 2. The logarithm of the oscillator strengths for the d-f dipole transitions as a function 
of the photon frequency. ( I  = 2, j = 3/2) + ( I  = 3, j = 5/2) transition: broken curve; ( I  = 2, 
j = 5/2) + ( I  = 3, j = 5/2) transition: dotted curve; ( I  = 2, j = 5/2) --z ( I  = 3, j = 7/2)  
transition: full curve. 

0.4 1.6 2.8 

r [aul 
Figure 3. The upper components wavefunctionsg,, -3(r ,  E )  (full curve), g,= -4(r, E + 50 eV) 
(dotted curve), and gx=-4(r, E + 200eV) (broken curve). The muffin-tin radius is R,, = 
2.511 au. 

curve) and at ho = 190 eV for the ( K  = -3, K' = -4) one (full curve). Figure 3 shows 
the initial-state large components of the wavefunctions (0 < r < R,, = 2.511 au) for 
K = -3, and the same for two high energies, corresponding to ho = 50 and 200 eV 
respectively, and for K' = -4. One can see that the high-energy large components are 
close to each other for r < 1.0 au, but for higher radii the 200 eV one bends up and 
crosses zero, while the other tends to saturate. This circumstance together with the 1.2 
factor in the integral makes the leading term of the radial integral for the case ho = 
200 eV rather smaller than the other case due to the new negative contribution. There 
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must be, therefore a photon frequency at which the oscillator strength vanishes. The 
presence of the other terms related to the lower components, which are much smaller, 
eventually produces shifts of the zeroes. We note that this argument for the physical 
origin of the minima is just that of Cooper (1962), with relativistic corrections. 

2.5. The relativistic LEED formulae for photoemission 

Equation (15) is a plane wave incident onto the surface of the crystal. To calculate the 
time reversed LEED state in equation (9) properly we must allow this wave to be scattered 
by the crystal, i.e. a slab of non-equivalent layers (see for example Pendry 1974, Feder 
1981). We now present the formulae for the case of aone-atom-per-layer unit-cell crystal 
and for a bulk-repeat unit made by one layer. 

In the atom placed at the origin c, of the n-th layer we have an incident wave given 
by 

q! = 2 w ~ O A ~  exp[iKl - (r - c , ) l +  2 w;O*" exp[iK, * ( r  - c, ) ]  (38) 
g,s g,s 

with 

w; 111 = (k  + g)ll 

KiZ = +[2m(E + hw - Vo){l + [ ( E  + hw - Vo)/mc2]} - Ik + g12]i'2 (39) 

where g is a layer reciprocal lattice vector. Evidently q! consists of a forward- and a 
backward-travelling plane wave. The Ware spinor amplitudes as for equation (12). Now 
we expand this plane wave in spherical waves. 

with 

A:? = 4~ 2 i'(-2s)(-1)~-s[~I_,+s(R,+)w~0A" + Y,- ,~+~(R;)W;O~~] (41) 
g,s 

where the Ware the scalar coefficients of the corresponding W. Scattering theory allows 
us to construct the spherical wave amplitude of a wave scattered by a layer as 

where 

~ ; , ~ , ~ ~ ( k l i ,  E + hw) = ((t")-' - Gf,",),iIKp (43) 

z" is the scattering path operator for the n-th layer, Gf,, the relatavistic KKR structure 
constants for the same layer and t is the single site t-matrix, whose 'on-energy-shell' 
components are given in terms of the scattering phase shifts as 

t; = -(l/k) sin S;  exp(i8;). (44) 

By means of the scattering path operator we can define the transmission coefficient of a 
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layer, i.e. the plane wave matrix element of z" in terms of the forward (+z )  travelling 
waves: 

Similarly, the backward-forward matrix element of the z" matrix is the reflection matrix 
of the layer itself: 

It is interesting to note the following identities that make this relativistic treatment 
different from the non-relativistic one (Pendry 1974): 

RigtSS' = (-l)(S-S')Rig;SS' T i ; s s '  = ( -1)(s-J')  Tigtss'. (47) 

Equations (42)-(47) solve the multiple scattering problem of an isolated layer. We now 
have to bring together many layers by shifting their origins, and take into account the 
multiple-scattering corrections due to the presence of these many layers. To accomplish 
that there is a number of standard procedures in LEED-type calculations (see for example 
Feder 1981, and references therein). We use the layer-doubling method (Pendry 1974 
and 1976) to calculate the bulk reflectivity and to achieve that we need to add an 
imaginary part to the energy, so that the plane waves will become evanescent, therefore 
their amplitudes will fade after a certain penetration depth, limiting so the number of 
layers entering in the calculation. One ends with an expression similar to equation (38) 
where the W' coefficients this time contain information about multiple scattering. 
Transforming the related plane waves in spherical waves we end up with: 

Y! = zAEW'&(r ;  E + hw). 
KU 

The same calculation can provide the low energy state, with a formula entirely analogous 
to equation (48), but in which all the quantities are calculated for the energy E and 
momentum -kll + q.  The other fundamental difference is that while the incident wave 
for the LEED state is just a free-space plane wave at the surface, the incident wave 
amplitude is the amplitude of probability of the transition from a time reversed LEED 
state down to the low energy state in the bulk (Pendry 1976, Hopkinson et a1 1980). 

etc.), the above formulae 
are easily generalisable. It is enough to consider the label n as representing the couple 
(m, i) for the m-th layer and for the i-th atom in the m-th layer unit cell, in the formulae 
(41)-(45), and to consider the repeat bulk unit as made up of many layers in the layer 
doubling method and in the formulae like equations (38) and (41). The other difference 
is some phase factor exp( kik, - u t )  where ui is the position of the i-th atom in the unit 
cell to be inserted properly in equations (41), (45) and (46). 

In the case of more complex structures (say L12, 
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2.6. The photocurrent formulae 

Following Pendry’s non-relativistic theory we may break the total photocurrent into 
four self-explanatory contributions: 

I” = z:; + z:;ra + ztAer + z;& (49) 

where 

Z i t  = -Im 2 A ~ p , D ~ , p , , K @ t ; M ; K ’ ~ , D K p , ~ , p , , A ~ ~  (50) 
JT n K K ’ < I ( I ( ’ ~ *  

i.e. the photocurrent produced by an isolated atom where M;Kfd is a radial double 
integral involving the dipole moment operator (cf equation (36)) and the low energy 
single site Green function defined as 

Goo(r, r ’ ;  E )  = 2 V K @ ( r >  E )  ‘;qL@(r’> E )  - C K @ ( ‘ > ;  E)vip(r<; E )  (51) 
KP KP 

where the subscript > stands for the greater magnitude of r o r  r’ and C K p  is the irregular 
solution of the Dirac equation that joins smoothly at the muffin-tin radius to J K r .  

The multiple scattering corrections Zfult = Z;&a + Z;ier may be written as 

Here M;lf‘) is: 

I (54) 
iwV“ 

+ - [ g ; , f ; ( K ’ - K - l ) + f ; , g ; ( K ’ - K + $ ) ]  
C 

where primed variables refer to the high energy state and complex conjugations take 
into account properly for time reversal and the fact that, owing to the layer doubling 
method, the energy E is a complex variable. The z matrix in equation (52) depends on 
the energy E and momentum -kll+ q. The surface term is: 

i.e. the photocurrent produced by the surface barrier. The w coefficients are the rela- 
tivistic generalisation of Pendry’s (1976). 
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In passing we note that the presence of the scattering path operator t” in equation 
(52) provides a direct link between the photoemission spectra and the band structure of 
the crystal owing to the following identities: 

t ( k ,  E )  = [ t - ’ (E)  - GEKR(k, E)]-’ (56) 

where n runs over the layers and the primed sum is over the lattice positions belonging 
to the n-th layer. The determinant of the inverse matrix in equation (56) is the so called 
KKR determinant whose zeroes define the band structure. Equation (56) directly relates 
photoemission spectra to that. We want also to remark that the above formulae enables 
us to calculate the ‘one-particle’ angle-resolved photoemission spectrum, for given 
surface and photon polarisations. Exchange and correlation effects are ‘frozen’ as they 
were in the ground state (this is the case when as input an LDA effective muffin-tin 
potential is used). However such a calculation makes possible a direct comparison 
with experimental measurements any time one may neglect ‘many-body’ effects and 
secondary electron emission (which is not in this theory either). 

As in the former subsection these formulae are applicable to the case of many-atom- 
per-unit-cell crystals, just visualising the sums over n (E,) as being sums over number 
of atoms per unit cell and repeat units as well. 

2.7. Normal emission from the (1, 1, 1) surface of Cu, Ag and Au 

As an illustration of the above theory we performed calculations of the photoemission 
spectra from the (1,1,1) surface of the noble metals. The results are shown in figure 4. 
The incidence angle is 50°, the emission angle is 0 (normal emission) and the reaction 
plane is the TKWL. The photon frequency is o = 21.2 eV (HeI), and the calculations 
were performed for both an s-polarised (the electric field parallel to the surface and 
orthogonal to the reaction plane) and a p-polarised (the electric field lies in the reaction 
plane and has a component orthogonal to the surface) photon beam. The unpolarised 
spectrum is the sum of s and p spectra and the spectra are normalised to the height of 
the maximum of the unpolarised spectrum. The step barrier height was taken the same 
for all the cases (V, = 0.94 Ryd) and the energy zeroes are the muffin-tin zeroes of the 
potentials used (derived from a self-consistent LMTO calculation). 

Looking at figure 4 one can see the effect of increasing the atomic number. The spin- 
orbit interaction produces a split in the low energy peak, which is very small for Cu 
(upper panel), about 0.5 eV for Ag (middle panel), and about 1.5 eV for Au (lower 
panel). These values are related to the splitting of the r,+ states along the A direction, 
and show how a relativistic theory is necessary to understand the details of the electronic 
states of a metal. The agreement of the spectra in figure 4 with the experimental data of 
Courths et a1 (1984) is remarkable. The overall shapes of the features are in sensible 
agreement, but the relative heights of the peaks are slightly different. The relative 
positions of the peaks are correct within few tenths of an eV, and the surface states are 
found at the right energies, if alittle distorted in shape. The computer code for calculating 
these spectra is a generalisation of the available non-relativistic code (Hopkinson et a1 
1980), and for the calculations shown it took few seconds of CRAY-XMP/48 machine per 
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(a1 n 
E -  V,+ (eVl 

Figure 4. The calculated photoemission spectra 
fromthe(1,1, l)surfaceofAu(a),Ag(b), andCu 
(c). Unpolarised spectra: full curves; s-polarised 
spectra: dotted curves; p-polarised spectra: 
broken curves. Aw = 21.2 eV; (ep, qp)  = (SO, 0); 
(@e@e) = (X> 0).  

energy point, being about a factor of six slower than the corresponding non-relativistic 
calculation. 

Another very interesting point concerns the spin structure of the photocurrent. It is 
now well established that circularly polarised light extracts spin-polarised photoelectron 
beams (Fano 1969), as experiments and calculations have shown for the case of Pt 
(1,1,1) surface (Eyers et a1 1984, Ginatempo et aZ1985, Ackermann and Feder 1985). 
Moreover Tamura et aZ (1987) have shown on the basis of symmetry arguments and 
analytical and numerical calculations, that it is also possible to extract spin-polarised 
photoelectrons using linearly polarised radiation. This interesting effect happens in the 
case of (1 ,1 ,1)  surfaces of FCC lattices, because there is no mirror plane perpendicular 
to a given mirror plane, orthogonal to the surface itself. Due to this fact the electron 
spin-polarisation vector P has a component parallel to the surface. We performed the 
calculation of the spin-polarisation, as indicated in 0 2.2, for the case of the (1,1,1) 
surface of Au using linearly polarised radiation, and the results confirm Tamura et af‘s 
(1987) statement. 

3. The random alloy case 

The multiple-scattering treatment used in the former section allows for an extension to 
the case of random alloys, following the procedure used by Durham (1981). As we 
mentioned before, there is a direct link between band structure of a pure metal and the 
angle-resolved photoemission spectra. For a random alloy the same link is between the 
Bloch spectral functions, the ‘alloy band structure’, and the ARPES. 
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For a random alloy containing heavy elements the only available first-principles 
method is the relation KKR-CPA of Staunton et a1 (1980). It is based on the coherent 
potential approximation, which describes the average Green function by the Green 
function for an electron moving in the field of an ordered array of effective scatterers. 
These are described by the coherent t-matrix t,, which is the solution of the following 
system of equations 

(c[(t;' - t ; y  + t P J - 1  + (1 - c)[(t;l  - t i l ) - '  + t!3+ = 0. 

The matrices involved in these equations are to be considered in the double point group 
representation (Onodera and Okazaki 1966). The main difference from pure metals is 
the nature of the single site coherent t-matrix tc. In particular, it corresponds to an 
inelastic scatterer, which has only the full cubic symmetry and is no longer a diagonal 
matrix. Recently, Ginatempo and Staunton (1988) suggested an efficient and reliable 
method to solve this system of equations in the double-point-group representation. 
Among other things their calculation yields the Bloch spectral function (see also Faul- 
kner and Stocks 1980) 

where a, p run over the atomic species, the CPA 'projector' D, is: 

D, = [l + ( t i '  - t ; ' ) - ' t F ] - '  (60) 
and the 'matrix elements' are: 

.%$ = i,, d r  v$ (r, 4vW7 €1. (61) 

It is noteworthy that equation (59) has a similar structure to equation (52) ,  but there 
the coefficients A& contain information about the multiple scattering of the final time- 
reversed LEED state. 

Now one can average, using CPA, the photocurrent in equations (49)-(55). Following 
Durham (1981) we find: 

(IAA) = (I% + ( IhA)mul t  + W s " r P  

( P j a t  = c I;;* + (1 - c)  I:!* 

(62) 

(63) 

The average of the surface term is trivial. For the atomic term we find 

where the notation is obvious. The multiple scattering term, however requires more 
attention (angular momentum indices are dropped for sake of clarity): 
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+ (1 - c ) [ A " ~ D ~ M $ ~ ) ( ~ ~ ~ ~  - tb)ME(')DAnh*] 

- [A nh Dt Mz(2) t z o o (  ~ ) M z ( 1 )  D A  d* 1) (66) 

(67) 

where the effective dipole radial integral is 

kf!$i' = 2 (cd,,pflp,fM:$!,, + (1 - c)db,~p~~M$?K~]l.  

t: = D ,  t z o o  = t z o o  d, (68) 

K"p" 

The '@-partial' t matrix (the conditional CPA average fixing the a species in the 0-th site) 
is 

and the calculation for the high energy state amplitude A$ (cf equations (41) and (42)) 
is performed by means of the averaged t-matrix approximation (ATA) for the high-energy 
scattering amplitude: 

tfTA(E + ho)  = ct,(E + hw) .f (1 - C ) t b ( E  + hw). (69) 

Such an approximation is justified by the fact that usually at high energy CPA and ATA 
tend to coincide. Finally, note that in arriving at equations (65) and (66) we have 
averaged the product of three t matrices by making the following approximation: 

( t ( E  + no) t ( E )  d ( E  + ho)) F * ( E  + ho) t , ( E )  Z+*T*(E + no). (70) 
This means neglecting even the CPA vertex corrections (Szotek et a1 1984). According to 
Durham (1981) to neglect those is consistent with the ATA. The meanings of coherent 
and incoherent intensities (ZtAh and It$c respectively) also follow the nomenclature 
introduced by Durham (1981). 

One of the many interesting consequences of the above theory concerns the spin- 
polarisation. Evidently, in the case of a random alloy, the biggest contribution to P, 
should come from those states and k-points where spin-orbit interaction is stronger. 
Therefore for an alloy made by a light and a heavy element with a split-band behaviour 
(say Cu-Au or Ni-Pt) a measurement of P, might help to identify the states related to 
the heavy element, provided the right final state has been selected. Such a remark is of 
course applicable to ordered alloys as well. 

Another interesting experimental possibility for highlighting the A ( B )  related bands 
at the expense of the contributions from the B ( A )  related bands is suggested by the 
Cooper minima. Different elements will have such minima in different ranges of photon 
frequency, therefore with a careful study such a theory might predict where to look for 
successfully identifying A and B states by means of ARPES. 

4. The photoemission spectra of Cu,Au in the ordered and disordered state 

Our first aim in this section is to demonstrate the tractability of the above theory for 
random alloys by explicit calculations for Cuo,75Auo,25. Secondly, we will show results 
using the many-atom-per-unit-cell version of the theory of 0 2 for the ordered inter- 
metallic compound Cu3Au. By picking these two particular examples to illustrate the 
uses of the two newly accessible sectors of a fairly general theory of photoemission from 
metals, we wish to focus attention on a new opportunity created by their combined use 
for studying the role of the electronic structure in order-disorder transformations. 
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Figure 5. The calculated photoemission spectra 
from the (1,0,0) surface of ordered (a) and dis- 
ordered (b)  Cu3Au alloy. Notation for unpolar- 
ked, s- andp-polarisedspectra asinfigure4. ho = 
40 eV; (ep, QJ& = (3090); (@ea Ve) = ( ~ 3  0) .  

The question of what drives the famous order-disorder transition of Cu3Au, from 
the low temperature L12 structure at T = 683 K to the high temperature FCC solid- 
solution state, is of seminal interest (Khachaturian 1983). Clearly an attractive sug- 
gestion is that, by studying the electronic structure with photoemission below and above 
the phase transition one may hope to identify its electronic cause. The calculations we 
shall present in this section will constitute evidence that such hope is justified. 

In short, using the theories of PO 2 and 3, we have studied the normal emission 
spectra from the (1,0,0) surface of Cu3Au in both the ordered and disordered phases 
respectively. The incidence angle was chosen to be 0, = 30". We took the plane of 
emission to be the TXWK, and the photon frequency to be fiw = 40 eV, in both cases. 
The potential functions used in both sets of calculations were the same. They were 
determined by a self-consistent LMTO calculation (Temmerman 1988). The electronic 
structure of the solid solution was that determined by the KKR-CPA relation calculations 
of Ginatempo and Staunton (1988). 

Figure 5 shows respectively ( a )  the ordered and ( b )  the disordered spectra for s, p 
and unpolarised light. The spectra have been normalised to the height of the main peak 
of corresponding unpolarised spectra. The energy zero in figure 5 corresponds to the 
Fermi level of the ordered alloy. 

Comparing the two panels one can immediately see how the effect of the disorder is 
the smearing out of the ordered features leaving the main peak at 2.8 eV (arising from 
Cu related states) and the peak at 6.5 eV (Au related) essentially unchanged, apart from 
a shift. Much bigger are the changes of the peaks at 4.9 and 5.4 eV, which, particularly 
for the p-polarised spectra, almost disappear. These are the compound-related states 
and characterise the Cu3Au L12 structure. Evidently, it is tempting to regard these 
states as the principle carrier of the electronic driving force behind the order-disorder 
transformation. A full analysis of the experimental data in terms of calculations as the 
above throws useful light on this suggestion and will be published elsewhere. 
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5. Conclusion 

We have presented a relativistic theory for the angle- and spin-resolved photoemission 
from ordered and disordered non-magnetic metals, and illustrated its use by explicit 
calculations on the noble metals and on the Cu3Au system. We have also presented a 
transformation of the relativistic dipole matrix element into its relativistic acceleration 
form and discussed useful new features of the new formula. It was argued that the 
flexibility of this theory enables us to calculate the ARPES spectra of ordered and dis- 
ordered alloy on an equal footing, and that such calculations can help to clarify the role 
of the electronic structure in the order-disorder transformations. A detailed comparison 
between theoretical and experimental data on Cu3Au will be published in a separate 
paper. 
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